US009338498B2

a2z United States Patent (10) Patent No.: US 9,338,498 B2
Needham et al. 45) Date of Patent: May 10, 2016

(54) SYSTEM AND METHOD FOR DRAWING (52) US.CL
ANTI-ALIASED LINES IN ANY DIRECTION CPC HO4N 21/42653 (2013.01); GO6T 1/60

(71) Applicant: The DIRECTYV Group, Inc., El
Segundo, CA (US)

(72) Inventors: Leyland Needham, Redondo Beach, CA
(US); Andrew J. Schneider, Irvine, CA
(US); Justin T. Dick, Salt Lake City, UT
(US); Huy Q. Tran, Westminster, CA
(US)

(73) Assignee: The DIRECTYV Group, Inc., El
Segundo, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 14/812,824

(22) Filed: Jul. 29, 2015
(65) Prior Publication Data
US 2015/0334444 A1l Nov. 19, 2015

Related U.S. Application Data

(63) Continuation of application No. 13/294,146, filed on
Nov. 10, 2011, now Pat. No. 9,098,938.

(51) Int.CL
GO6T 11/20 (2006.01)
GO6T 1/60 (2006.01)
HO4N 21/426 (2011.01)
GO6T 11/00 (2006.01)
GOG6T 5/00 (2006.01)
HO4N 21/61 (2011.01)

P it

818 Prevendered
Line Texiure

(2013.01); GO6T 5/003 (2013.01); GO6T
11/001 (2013.01); GO6T 11/203 (2013.01);
HO4N 21/42692 (2013.01); HO4N 21/6143
(2013.01); GO6T 2200/12 (2013.01); GO6T
2207/10016 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,141,020 A * 10/2000 Larson GO6T 11/40
345/501

6,885,378 B1* 4/2005 Tsai ...cccooevvvnnnnne. GO6T 15/005
345/541

7,224,372 B2* 52007 Brown GO6T 11/203
345/611

2004/0233210 Al* 11/2004 Hancock GO6F 3/14
345/582

* cited by examiner

Primary Examiner — Aaron M Richer
(74) Attorney, Agent, or Firm — Fitzgerald & Isaacson, LLP

(57) ABSTRACT

A prerendered line texture stored in memory is used to gen-
erate an anti-aliased destination line in any direction to be
displayed on a screen. A combination of tiling, stretching,
and/or mirroring is used to generate the anti-aliased destina-
tion line. A blitter blits a rectangle in the prerendered line
texture to a destination rectangle in the frame buffer that is
displayed on the screen.

18 Claims, 12 Drawing Sheets

P 41

15%32 Desired
Ling

US 9,338,498 B2

Sheet 1 of 12

May 10, 2016

U.S. Patent

— b W JBRMOIY M LSRR 904’
- TR CEg TR Pl
454} b P
BUNOSOY e F e
e f.}.,.}«!
HIOMIBN r\f SIOMAN Xv. -
SOINOEY P P %.z./
ﬁo&%% “ / |
\,\ \ ott
BpiL” m:i%
SHSRLBL] J080
1 {seounog opny e
At I Bizieliors)¥
m\k IBAISOEM AY e $GL
A1 w
aww : 3 SNROW MUBUAOC
L uosABRlL Meesl TERTII
o1 S xog g0y 198
4 1 Ol

SBDINCS BIBC]

4
— Besen
aerer L uOBseduo
98 e
D g B i A
T HHOSHC BiRg
Bl SRGUPNGT
GHRUOTY B8
L sseunnD
84 | B Mww am
414 2 I
gy L] depdiiaug
1943 o y
ez, oL NOWSdL |
; ICRBINDOWN
MMM . L} d8UBAUOY
w w,mﬁ xx,..\;, mmw m%@m}w
mwwm\(‘)l.\, mwv‘f
pd 1 /»_ M
! 234k
281

US 9,338,498 B2

Sheet 2 of 12

May 10, 2016

U.S. Patent

LIBRAG
LONBIUIESS I
zipany

PPl

7 8inBig
g | [%%
awmwiy o R e
807 " w
¥
Bligiicele it slg ‘
JOSSO00IE Ml ASIUIDNNY
F1T e H AUAR POF o
SOBUNG | . SINPOW
oBspiA | D3dn AUHUAG(]
Ve LT V4 4 R
xou doj 189
4

U.S. Patent

May 10, 2016 Sheet 3 of 12

US 9,338,498 B2

oo 300

Figure 3

US 9,338,498 B2

Sheet 4 of 12

May 10, 2016

U.S. Patent

ey ambig

sampxe wexd yoes
103 AusuS sUuLIBIRg

joxid J8Iu80 Woy
LD pue dn 1y us o
0G0 1B Biexid I WD
apinosd 0} BINIKE) DE

:

QB

PO

EQGP
G0

BUY JO ISIUSD S0
BUTINEY U1 IN000 YB3 siexid
0 JRGQLINL BUILLIISY

US 9,338,498 B2

Sheet 5 of 12

May 10, 2016

U.S. Patent

P2y dols Ul pOIRINGIRD
Ajsus JO UDIoUnY
B B Aysusiul sisinoen

£ 3

ey

ARQ = Aysusiy

0 = Aususi

Gt anbiyg

O = Asus

BUI WO S0UBISID
oxid 1o uonoun B se
AuSUSIUL SIBINDIES

Hipma
Gl 0 voRouny
2 58 Ajsusiy
SiBITIES

02y 7

Gbb”

b

U.S. Patent May 10, 2016 Sheet 6 of 12 US 9,338,498 B2

510

Figure 5b

506G

Figure Ba

US 9,338,498 B2

Sheet 7 of 12

May 10, 2016

U.S. Patent

g aunkig

LaBIoY
ul siBuenet uonBLISED
0} SUNIXE] BUl pesepuslad

G0l WD 2BURIDE 82IN08 1Y
&
uasws w abumoeal
LOHBUNSAD SUILLSIR0
P0G
3
UNIHD)
suy passpusiaid woy
08— gifueos: somos WRIGO
008 o™

US 9,338,498 B2

Sheet 8 of 12

May 10, 2016

U.S. Patent

Bl
passaq ZEXgl

0L e’

e aunbig

BIHBL BT
PEIBPUBISIL GXg

Z0L

U.S. Patent May 10, 2016 Sheet 9 of 12 US 9,338,498 B2

o
s
r‘“ —
i e
K% @
% 0
&3
2
%
e B
o B
T
S
oo
@
-
Ry
[

R

Bx8 Prerendered
Ling Toexiure

US 9,338,498 B2

Sheet 10 of 12

May 10, 2016

U.S. Patent

SHIG JO JSQUING 8L} 4O
POG puB 200 sdos padoy
918 3
uBsuos U sifusnsg
UCHBULESD O sinpe) sul
Wil BURIDSS 8LIN0S 1Y
Vg :

{ol1) B au 0}

g ainfig

uBaos w aburnss
LOREUNSEnD O) SR suy
wicy) uRIDB: SUNCES Hig

g

Buumiens
084S O sigad BuolipDE
Buiaey sifiusipad

Y

HOIBUISSD SURITIRG
\\, 3

HOnaaHD
wisuodwios isBug
104 peppe 8y o) painbel
sianad 10 Jequuiny spinoen

G908

K‘\\\\z\, #

HBUBOal ONBUNSID IS

SO SEYBUIRIODD SULLISIRG

EL8

008

UOIDeHD pisunduioD
Jaunys Jo) paanba (sap)

¥08

SUIT J0 IBILNL SiETR D)

rad 3

UCGIOBD IBNaA
30 ppuoTuoy U ebug
BUI JSLIGUM BLILISIRC

08

US 9,338,498 B2

Sheet 11 of 12

May 10, 2016

U.S. Patent

006

& sinbig

‘oL pucBEp uogBunSED
a4 J0 wsuodwios sebuot sy W siexd jo
ABULUNG SUL W0 INSE) UDISIAID IBANR

G086 "

SHIG PeImbaI Jo IBgLunU A YNSHI SpInc

P0G

B
euoBeip uoERLIISeD B 1O JSUoHLGD
sefiuny ouy u siaxid 10 JBLUINY BUILLIDISC

E06 o’

US 9,338,498 B2

Sheet 12 of 12

May 10, 2016

U.S. Patent

1 2mnbiy
Wwsuodiuog wisuoduos
IEIIOZHON IEILIBA
Jabuo) Ui auy Jeliuny upm suy
puchep wa puobem wig
SLlf BOIBA
‘ OO e
PLOL b Apriien sind Jg
jabuo
H ,me\m@Nm oy 800}
o " mom wmmgwmﬁm S IRLDZLOY
ABIUOZUOY 5B m o aind g
JeBuo BRUOT _ 5
OLOL \\\a, P P00
o Laury _
< [EIISA

D00L

Bing
800L

ZO0L

£L8UN
IBIUOZUOH
BN

US 9,338,498 B2

1
SYSTEM AND METHOD FOR DRAWING
ANTI-ALIASED LINES IN ANY DIRECTION

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

1. Field

Embodiments relate to efficient line drawing on a video
display. More particularly, embodiments relate to drawing
anti-aliased lines in any direction using a single prerendered
line texture.

2. Background

Conventional set top boxes display lines ona video display,
such as a television screen by rendering the lines directly to a
frame buffer using the CPU or by creating a large line texture
that stores the entire length of the line. Rendering a line
directly using the CPU diverts CPU processing from other
tasks that it might otherwise perform.

Storing a large line texture can require significant amounts
of scarce memory resources. For example, to store a texture
required to render a line across an entire 1920x1080 high
definition screen requires 2,073,600 bytes of memory. Four
times that amount is required to store a full color rendering of
the line. As a result, storage of large line textures can be
wasteful of available memory resources.

Another issue is that drawing must be to the frame buffer as
the frame buffer is what is displayed on the screen. However,
such drawing typically requires pixel-by-pixel drawing to the
frame buffer. This requires constantly moving memory
between user-space memory and kernel-space memory,
which can be very costly in terms of performance.

SUMMARY

To overcome the aforementioned problems, a prerendered
line texture stored in memory is used to generate an anti-
aliased destination line in any direction to be displayed on a
screen. A combination of tiling, stretching, and/or mirroring
is used to generate the anti-aliased destination line. In one or
more embodiments, a blitter blits a rectangle in the preren-
dered line texture to a destination rectangle in the frame buffer
that is displayed on the screen.

In one or more embodiments, a system for rendering a line
on a screen display includes a memory and a frame buffer to
store data to be displayed on the screen display, a processor to
create a prerendered line texture comprising a plurality of
pixels to store in the memory, the processor to generate a
source rectangle in the memory and a destination rectangle in
a frame buffer that corresponds to at least a portion of a
destination line, and a blitter to blit the prerendered line
texture from the source rectangle in the memory to the desti-
nation rectangle in the frame buffer. In one or more embodi-
ments, the destination line may be a destination diagonal line
having a vertical component and a horizontal component,
wherein the blitter stretches the prerendered line texture in a
direction corresponding to the longer of the vertical and hori-
zontal components and tiles the prerendered line texture in a
direction corresponding to the shorter of the vertical and
horizontal components.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one or more embodiments, a method for rendering a line
onascreen display includes storing a prerendered line texture
having a plurality of pixels in a memory, generating a source
rectangle in the memory, generating a destination rectangle in
a frame buffer that corresponds to at least a portion of a
destination line to be displayed on the screen display, and
blitting the prerendered line texture from the source rectangle
in the memory to the destination rectangle in the frame buffer.
In some embodiments, the destination line may be a destina-
tion diagonal line having a vertical component and a horizon-
tal component, and the method may further include stretching
the prerendered line texture in a direction corresponding to
the longer of the vertical and horizontal components and
tiling the prerendered line texture in a direction correspond-
ing to the shorter of the vertical and horizontal components.

Additional features and embodiments will be evident in
view of the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an exemplary system for
providing television services in a television broadcast system,
such as a television satellite service provider, in accordance
with one or more embodiments.

FIG. 2 is a simplified schematic diagram of an exemplary
set top box in accordance with one or more embodiments.

FIG. 3 is an exemplary prerendered line texture in accor-
dance with one or more embodiments.

FIG. 4a is a flowchart for generating a prerendered line
texture in accordance with one or more embodiments.

FIG. 4b is a flowchart for determining pixel intensity in
accordance with one or more embodiments.

FIG. 5a is an exemplary stretch blit of a vertical line using
a single pixel line pixel width from a prerendered line texture.

FIG. 5b is an exemplary stretch blit of a horizontal line
using a single pixel line pixel width from a prerendered line
texture.

FIG. 6 is a flow chart for rendering a horizontal or vertical
line in accordance with one or more embodiments.

FIG. 7a illustrates creating a destination diagonal line from
a prerendered line texture in accordance with one or more
embodiments.

FIG. 75 illustrates creating a destination diagonal line in
accordance with one or more embodiments.

FIG. 8 is a flow chart for generating a diagonal line from a
prerendered line texture in accordance with one or more
embodiments.

FIG. 9 is a flow chart for determining the number of pixels
to be added to generate the required stretch in accordance
with one or more embodiments.

FIG. 10 is a flow chart for a method of invoking the line
drawing functions described herein in accordance with one or
more embodiments.

DETAILED DESCRIPTION

FIG. 1is a schematic diagram of an exemplary system 100
for providing television services in a television broadcast
system, such as a television satellite service provider, accord-
ing to one or more embodiments. As shown in FIG. 1, exem-
plary system 100 is an example direct-to-home (DTH) trans-
mission and reception system 100. The example DTH system
100 of FIG. 1 generally includes a transmission station 102, a
satellite/relay 104, and a plurality of receiver stations, one of
which is shown at reference numeral 106, between which
wireless communications are exchanged at any suitable fre-
quency (e.g., Ku-band and Ka-band frequencies). As

US 9,338,498 B2

3

described in detail below with respect to each portion of the
system 100, information from one or more of a plurality of
data sources 108 is transmitted from transmission station 102
to satellite/relay 104. Satellite/relay 104 may be at least one
geosynchronous or geo-stationary satellite. In turn, satellite/
relay 104 rebroadcasts the information received from trans-
mission station 102 over broad geographical area(s) includ-
ing receiver station 106. Exemplary receiver station 106 is
also communicatively coupled to transmission station 102 via
anetwork 110. Network 110 can be, for example, the Internet,
a local area network (LLAN), a wide area network (WAN), a
conventional public switched telephone network (PSTN),
and/or any other suitable network system. A connection 112
(e.g., a terrestrial link via a telephone line and cable) to
network 110 may also be used for supplemental communica-
tions (e.g., software updates, subscription information, pro-
gramming data, information associated with interactive pro-
gramming, etc.) with transmission station 102 and/or may
facilitate other general data transfers between receiver station
106 and one or more network resources 114a and 1145, such
as, for example, file servers, web servers, and/or databases
(e.g., a library of on-demand programming).

Data sources 108 receive and/or generate video, audio,
and/or audiovisual programming including, for example,
television programming, movies, sporting events, news,
music, pay-per-view programs, advertisement(s), game(s),
etc. In the illustrated example, data sources 108 receive pro-
gramming from, for example, television broadcasting net-
works, cable networks, advertisers, and/or other content dis-
tributors. Further, example data sources 108 may include a
source of program guide data that is used to display an inter-
active program guide (e.g., a grid guide that informs users of
particular programs available on particular channels at par-
ticular times and information associated therewith) to an
audience. Users can manipulate the program guide (e.g., viaa
remote control) to, for example, select a highlighted program
for viewing and/or to activate an interactive feature (e.g., a
program information screen, a recording process, a future
showing list, etc.) associated with an entry of the program
guide. Further, example data sources 108 include a source of
on-demand programming to facilitate an on-demand service.

An example head-end 116 includes a decoder 122 and
compression system 123, a transport processing system
(TPS) 103 and an uplink module 118. Decoder 122 decodes
the information by, for example, converting the information
into data streams. Compression system 123 compresses the
bit streams into a format for transmission, for example,
MPEG-2 or MPEG-4. In some cases, AC-3 audio is not
decoded, but passed directly through without first decoding.
In such cases, only the video portion of the source data is
decoded.

In some embodiments, multiplexer 124 multiplexes the
data streams generated by compression system 123 into a
transport stream so that, for example, different channels are
multiplexed into one transport. Further, in some cases a
header is attached to each data packet within the packetized
data stream to facilitate identification of the contents of the
data packet. In other cases, the data may be received already
transport packetized.

TPS 103 receives the multiplexed data from multiplexer
124 and prepares the same for submission to uplink module
118. TPS 103 includes a loudness data collector 119 to collect
and store audio loudness data in audio provided by data
sources 108, and provide the data to a TPS monitoring system
in response to requests for the data. TPS 103 also includes a
loudness data control module 121 to perform loudness con-
trol (e.g., audio automatic gain control (AGC)) on audio data

10

15

20

25

30

35

40

45

50

55

60

65

4

received from data source 108. Generally, example metadata
inserter 120 associates the content with certain information
such as, for example, identifying information related to media
content and/or instructions and/or parameters specifically
dedicated to an operation of one or more audio loudness
operations. For example, in an embodiment, metadata
inserter 120 replaces scale factor data in the MPEG-1, layer 11
audio data header and dialnorm in the AC-3 audio data header
in accordance with adjustments made by loudness data con-
trol module 121.

In the illustrated example, the data packet(s) are encrypted
by an encrypter 126 using any suitable technique capable of
protecting the data packet(s) from unauthorized entities.

Uplink module 118 prepares the data for transmission to
satellite/relay 104. In an embodiment, uplink module 118
includes a modulator 128 and a converter 130. During opera-
tion, encrypted data packet(s) are conveyed to modulator 128,
which modulates a carrier wave with the encoded informa-
tion. The modulated carrier wave is conveyed to converter
130, which, in the illustrated example, is an uplink frequency
converter that converts the modulated, encoded bit stream to
a frequency band suitable for reception by satellite/relay 104.
The modulated, encoded bit stream is then routed from uplink
frequency converter 130 to an uplink antenna 132 where it is
conveyed to satellite/relay 104.

Satellite/relay 104 receives the modulated, encoded bit
stream from the transmission station 102 and broadcasts it
downward toward an area on earth including receiver station
106. Example receiver station 106 is located at a subscriber
premises 134 having a reception antenna 136 installed
thereon that is coupled to a low-noise-block downconverter
(LNB) 138. LNB 138 amplifies and, in some embodiments,
downconverts the received bitstream. In the illustrated
example of FIG. 1, LNB 138 is coupled to a set-top box 140.
While the example of FIG. 1 includes a set-top box, the
example methods, apparatus, systems, and/or articles of
manufacture described herein can be implemented on and/or
in conjunction with other devices such as, for example, a
personal computer having a receiver card installed therein to
enable the personal computer to receive the media signals
described herein, and/or any other suitable device. Addition-
ally, the set-top box functionality can be built into an A/V
receiver or a television 146.

Example set-top box 140 receives the signals originating at
head-end 116 and includes a downlink module 142 to process
the bitstream included in the received signals. Example
downlink module 142 demodulates, decrypts, demultiplexes,
decodes, and/or otherwise processes the bitstream such that
the content (e.g., audiovisual content) represented by the
bitstream can be presented on a display device of, for
example, a media presentation system 144. Example media
presentation system 144 includes a television 146, an AV
receiver 148 coupled to a sound system 150, and one or more
audio sources 152. As shown in FIG. 1, set-top box 140 may
route signals directly to television 146 and/or via AV receiver
148. In an embodiment, AV receiver 148 is capable of con-
trolling sound system 150, which can be used in conjunction
with, or in lieu of, the audio components of television 146. In
an embodiment, set-top box 140 is responsive to user inputs
to, for example, tune a particular channel of the received data
stream, thereby displaying the particular channel on televi-
sion 146 and/or playing an audio stream of the particular
channel (e.g., a channel dedicated to a particular genre of
music) using the sound system 150 and/or the audio compo-
nents of television 146. In an embodiment, audio source(s)
152 include additional or alternative sources of audio infor-
mation such as, for example, an MP3 player (e.g., an Apple®

US 9,338,498 B2

5
iPod®), a Blueray® player, a Digital Versatile Disc (DVD)
player, a compact disc (CD) player, a personal computer, etc.

Further, in one or more embodiments, example set-top box
140 includes a recorder 154 capable of recording information
on a storage device such as, for example, analog media (e.g.,
video tape), computer readable digital media (e.g., ahard disk
drive, a digital versatile disc (DVD), a compact disc (CD),
flash memory, etc.), and/or any other suitable storage device.

FIG. 2 is a simplified schematic diagram of an exemplary
set top box (STB) 140 according to an embodiment. Such a
set top box can be, for example, in the DIRECTV HR2x
family of set top boxes. As shown in FIG. 2, STB 140 includes
a downlink module 142 described above. In an embodiment,
downlink module 142 is coupled to an MPEG decoder 210
that decodes the received video stream and stores it in a video
surface (memory) 212.

A processor 202 controls operation of STB 140. Processor
202 can be any processor that can be configured to perform
the operations described herein for processor 202. Processor
202 has accessible to it a memory 204. As will be described in
detail below, memory 204 is used to store a prerendered line
texture. For example, in an embodiment, the prerendered line
texture is a small segment of a line that will be tiled, stretched,
and mirrored according to embodiments. Memory 204 can
also be used as storage space for recorder 154 (described
above). Further, memory 204 can be used to store programs to
be run by processor 202 as well as used by processor 202 for
other functions necessary for the operation of STB 140 as
well as the functions described herein. In alternate embodi-
ments, one or more additional memories may be implemented
in STB 140 to perform one or more of the foregoing memory
functions.

A blitter 206 performs block image transfer (BLIT or blit)
operations. BLIT operations include stretch, tile, and mirror
operations. In embodiments, blitter 206 performs BLIT
operations on a prerendered line texture stored in memory
204 across a frame buffer 208. In an embodiment, blitter 206
is a co-processor that provides hardware accelerated anti-
aliased line drawing. Blitter 206 renders destination lines
using reduced memory resources and does not require direct
access to the frame buffer. A suitable blitter for use in embodi-
ments is the blitter found in the DIRECTV HR2x family of
STBs.

Frame buffer 208 stores an image or partial image to be
displayed on media presentation system 144. In an embodi-
ment, frame buffer 208 is a part of memory 204. A compositor
214 receives data stored in frame buffer 208 and video surface
212. In an embodiment, compositor 214 blends the data it
receives from frame buffer 208 with the data it receives from
video surface 212 and forwards the blended video stream to
media presentation 144 for presentation.

In an embodiment, the prerendered line is a small image
that is drawn during an initialization process prior to opera-
tional use of STB 140 and stored in memory 204. In an
embodiment, for example, processor 202 draws the small line
segment and stores it in memory 204 prior to auser using STB
140 for entertainment purposes. In an embodiment, the prer-
endered line texture is 62x62 pixels. However, in practice, the
prerendered line texture can be any size, the size being a
tradeoff between memory usage and number of BLIT opera-
tions required to draw the destination line. In an embodiment,
the texture is owned by the system and not modifiable by the
user.

In an embodiment, the prerendered line texture is essen-
tially an anti-aliased line at a 45 degree angle. Other angles
can be used in alternate embodiments. In an embodiment,

10

15

20

25

30

40

45

50

55

60

65

6

lines of different widths are provided by providing different
prerendered line textures having different widths.

To save memory, in an embodiment, the texture contains
only the alpha color of the pixel. As a result, each pixel
requires only one byte to store color information. Not only is
memory saved, but true anti-aliasing is performed over live
video because color blending is performed by the STB
graphic and composition hardware rather than processor 202.

In operation, blitter 208 loads the prerendered line texture
into the memory space of the graphics driver, for example
frame buffer 208 and performs BLIT operations on the prer-
endered line texture to render the destination line across the
frame buffer 208. In an embodiment, for example, if the line
is longer vertically than horizontally, the line is stretched
vertically and tiled horizontally. Combining tiling and
stretching in this manner allows creation of a smooth desti-
nation line of any length and angle. To render lines pointing in
a different direction than the prerendered line, processor 202
mirrors the prerendered line texture so that blitter 208 will
render the destination line in the correct direction.

The rendered lines can be used anywhere a line is required
on a screen. For example, such lines may be used to provide
a user interface on a screen, including, for example, bound-
aries around text, separators between text, grids, and any
other lines required to create the user interface.

FIG. 3 is an exemplary prerendered line texture 300
according to an embodiment. Prerendered line texture 300
has a size of, for example, 16x16 pixels. Prerendered line
texture 300 can have any pixel size, the tradeoff being
memory usage versus number of required BLIT operations.
In an embodiment, for example, the prerendered line texture
contains an anti-aliased line at a 45-degree angle. In practice,
for modern screen sizes, such a high definition screen having,
for example, 1920x1080 pixels, a texture size of 62x62 pixels
has been found to work well. Further, in an embodiment, the
line texture can be other than square and other than 45
degrees. However, square and 45 degrees is preferred.

Black pixels in prerendered line texture 300 represent
opaque pixels. Gray pixels in prerendered line texture 300
represent semi-transparent pixels. The semi-transparent pix-
els provide the anti-aliasing effect when the blitter renders the
destination line over a background by rendering the destina-
tion line to the frame buffer. Prerendered line texture 300 has
a line width of 1.5 pixels. Other widths can be used. In
addition, there may be additional layer(s) of semi-transparent
pixels with lines having greater widths.

In an embodiment, prerendered line textures of different
widths can be provided by different textures. If the destination
line is pointing in a different direction than the prerendered
line texture, the destination line may be rendered using a
mirroring operation that logically flips the prerendered line
texture about its vertical axis at the center of the prerendered
line texture so that it will cause rendering in the direction of
the destination line. As an alternative, multiple line textures
pointing in different directions may be stored.

FIG. 4a is a flowchart 400 for generating a prerendered
texture, such as prerendered texture 300, according to an
embodiment. In step 402, the number of pixels that occur in
the texture before the center of the prerendered line is deter-
mined. In step 404, the texture is padded to provide room for
pixels that occur left, right, up, or down from the center pixel.
In step 406, the intensity of each pixel in the texture is deter-
mined. In an embodiment, pixel intensity ranges from 0 to
255. In an embodiment, the steps in flowchart 400 are per-
formed by a processor such as processor 202.

FIG. 4b s a flowchart 410 for determining pixel intensity in
step 406 according to an embodiment. In step 412, a deter-

US 9,338,498 B2

7

mination is made as to whether the line width is greater than
1. If the line width is less than or equal to 1, processing
continues in step 414, where a determination is made as to the
pixel’s distance from the line. If the distance is 0, processing
continues in step 416, where intensity is determined as a
function of line width. For example, in an embodiment, the
intensity is determined as the ratio of the line width to 1. If the
determined distance is not 0 in step 414, processing continues
in step 418 where the pixel’s intensity is set to 0.

If'in step 412, the line width is determined to be greater than
1, processing continues in step 420 where a pixel value inten-
sity is calculated for the pixel. In an embodiment, the pixel
intensity calculation is based on the pixel’s distance from the
line. In an embodiment, the calculated value is used to set
pixels further away from the line with lower intensity values.

Processing continues in step 422 where a determination is
made as to whether the calculated intensity is greater than or
equalto 1. If so, the pixel’s intensity is set to OxFF (hexadeci-
mal representation of 255). If the intensity calculated in step
422 is less than one, processing continues in step 426 where
a determination is made as to whether the intensity calculated
in step 422 is less than 0. If so, processing continues in step
428 where the pixel’s intensity is set to 0. If the intensity
calculated in step 422 is greater than or equal to O as deter-
mined in step 426, processing continues in step 430 where the
pixel’s intensity is set to the ratio of the intensity calculated in
step 422 over 1.

Pseudo code for generating a prerendered texture accord-
ing to an embodiment is provided below in Listing 1. In the
embodiment, the pseudocode uses fixed point math. For the
example pseudo code, Texture_size, size of the texture, is 16
and Line_width, width of the line, is 1.5. The ‘fixed’ is fixed
point number with a 16 bit shift value. i.e. 1=0x10000 and
1.5=0x18000. In an embodiment, this is done to accommo-
date floating point math using a fixed point processor. In an
embodiment, a floating point processor can be used.

Listing 1. Pseudo code for prerendering line texture according to
an embodiment.

© 2011, The DIRECTV Group, Inc.
create_line_ texture(fixed line_ width, int texture_ width) {
// the line__offset is the number of pixels that occur before
// the center pixel of the line. This often includes a
// fractional pixel, but in an embodiment, full pixels are used
// and the ceiling is taken (+OxFFFF does this)
int line__offset = fixed__to__int(line_ width/2 — 0x8000 + OXFFFF);
// In an embodiment, all sides of the texture are padded to provide
// room in the texture to hold the pixels that occur
// left, right, up, and down from the center pixel of the line
int pixel__line_ width = line__offset * 2 + 1;
int width = pixel__line_ width + texture_ width;
// loop through every pixel of the line texture and calculate
// that pixel’s intensity (alpha component) based on its distance
// from the line. In an embodiment, all intensity values are mapped
// between the range of 0-255 (1 byte)
for (y =0; y < width; y++)
{

for (x = 0; x < width; x++)

fixed dist = abs(x -y) << 16;
if (line__width <= 0x10000)
{
// special case if the width of the line is 1 or less
// pixels are either O intensity or have an intensity equal
// to the ratio of line width over one
if (dist == 0)

texture__memory[y*width + x] = line_ width *
255/ 0x10000;

}

else

10

15

20

25

30

35

40

45

50

55

60

65

8

-continued

Listing 1. Pseudo code for prerendering line texture according to
an embodiment.

{
texture__memory[y*width + x] = 0x00;
¥
¥
else
{
// line width is greater than 1 pixel
// intensity is related to the distance of the pixel
fixed intensity = line_ width / 0x20000 + 0x8000 — dist;
if (intensity >= 0x10000)

texture__memory[y*width + x] = OXFF;
else if (intensity < 0)

texture__memory[y*width + x] = 0x00;

}

else
{
texture__memory[y*width + x] = intensity * 255 / 0x10000;
}
}
}

© 2011, The DIRECTV Group, Inc.

To render a line, that is to draw the line in the screen, the
line texture is blitted in specific ways to create a destination
line of the correct length and angle. To accomplish this, a
combination of stretching, tiling, and/or mirroring is per-
formed on the line texture by the blitter to transfer the line
texture onto the screen to create a destination line having the
desired characteristics in the desired direction. For destina-
tion diagonal lines, stretching controls the slope of the desti-
nation diagonal line to create lines of different angles. Tiling
the stretched line prevents the line from losing its smooth
edge or becoming blocky. In a preferred embodiment, if the
destination diagonal line is longer vertically than horizon-
tally, then the prerendered line texture is stretched vertically
and tiled horizontally. If, on the other hand, the destination
diagonal line is longer horizontally than vertically, the prer-
endered line texture is stretched horizontally and tiled verti-
cally. This is done because stretching is a more efficient
operation than tiling. Further, in an embodiment, because the
pixels are being rendered in the alpha channel, the blitter
automatically alpha blends the line with whatever is appear-
ing on the screen behind the line.

The destination line is the line the user desires to be dis-
played on the screen. In an embodiment, the user specifies
where the line is to appear on the screen by providing the
coordinates of the line. In an embodiment, the coordinates are
provided as a begin point and an end point in the screen (frame
buffer) space. For example, a destination line may be defined
by the start point (x1, y1) and the end point (x2, y2). In pixels,
the horizontal component of the destination line is abs(x2-
x1) and the vertical component is abs(y2-y1), where abs is
the absolute value function. Where abs(x2-x1) is 0, the des-
tination line is vertical. Where abs(y2-y1) is 0, the destina-
tion line is horizontal. Where neither abs(x2-x1) or abs(y2-
y1)is 0, the destination line is diagonal and referred to herein
as a destination diagonal line.

In an embodiment, purely horizontal or purely vertical
lines are created by stretch blitting a single line pixel width
slice of the prerendered line texture onto the screen the
desired horizontal or vertical distance. In an embodiment,
because the prerendered line texture has built-in anti-aliasing
using the alpha component, the anti-aliased portion of the line
needs to be blit as well.

US 9,338,498 B2

9

FIG. 5a is an exemplary stretch blit 500 of a vertical line
using a single pixel line pixel width from prerendered line
texture 300. Pseudo code for rendering a horizontal line
according to an embodiment is provided in Listing 2.

Listing 2. Pseudo code for rendering horizontal line according to
an embodiment

© 2011, The DIRECTV Group, Inc.
void blit__horizontal_line (int x1, int y1, int x2, int y2)
{
//(x1, y1) is the first point in the screen of the line being rendered
//(x2, y2) is the second point in the screen of the line being rendered
//For a horizontal line, y1=y2.
// In an embodiment, line__ offset is the offset into the line__texture to
// pull from to perform the blit
int line__offset = fixed__to__int(line_ width / 0x20000 - 0x8000 +
OXFFFF);
source__rectangle.x = line_ offset;
source__rectangle.y = 0;
source__rectangle.width = 1;
source_ rectangle.height = line_ offset * 2 + 1;
//destination line to render
dest_ rectangle.x = x1;
dest__rectangle.y =y1 - line_ offset;
dest_rectangle.width =x2 - x1 + 1;
dest__rectangle.height = line__offset * 2 + 1;
// Call blit function to render the line from source rectangle in
// prerendered line texture to destination rectangle in screen with
the desired width (x2-x1+1)
blit(line__texture, source__rectangle, dest_ rectangle);

© 2011, The DIRECTV Group, Inc.

FIG. 5b1s an exemplary stretch blit 510 of a horizontal line
using a single pixel line pixel width from prerendered line
texture 300. Pseudo code for rendering a vertical line accord-
ing to an embodiment is provided in Listing 3.

Listing 3. Pseudo code for rendering vertical line according to
an embodiment

© 2011, The DIRECTV Group, Inc.
void blit_ vertical_line(int X1, int y1, int X2, int y2)

//(x1, y1) is the first point in the screen of the line being rendered
//(x2, y2) is the second point in the screen of the line being rendered
//For a vertical line, x1=x2.

// In an embodiment, line__ offset is the offset into the line__texture to
// pull from to perform the blit

int line__offset = fixed__to__int(line_ width / 0x20000 —

0x8000 + OXFFFF);

source__rectangle.x = 0;

source__rectangle.y = line_ offset;

source__rectangle.width = line_ offset * 2 + 1;
source_rectangle.height = 1;

dest__rectangle.x = x1 - line__offset;

dest_ rectangle.y =y1;

dest__rectangle.width = line_ offset * 2 + 1;

dest_rectangle.height =y2 - y1 + 1;

// Call blit function to render the line from source rectangle in

// prerendered line texture to destination rectangle in screen with
the desired height (y2-y1+1)

blit(line_texture, source__rectangle, dest_ rectangle);

© 2011, The DIRECTV Group, Inc.

FIG. 6 is a flow chart 600 for rendering a horizontal or
vertical line according to an embodiment. In step 602, a
source rectangle is obtained from the prerendered line tex-
ture. In an embodiment, the source rectangle is a single pixel
line pixel width as shown, for example, in FIGS. 54 and 56. In
step 604 a destination rectangle in the screen is determined. In
an embodiment, the destination rectangle is determined as a
function of the screen coordinates of the desired line to be

10

15

20

25

30

35

40

45

50

55

60

65

10

rendered in the screen. In step 606, the source rectangle is
blitted to the destination rectangle and effectively stretched
vertically or horizontally (as required by the destination line
to be rendered) to be the desired line length.

In an embodiment, destination diagonal lines, that is lines
having a non-zero horizontal component and a non-zero ver-
tical component, are created by a combination of tiling,
stretching, and, in some cases, mirroring the prerendered line
texture. Because, in an embodiment, stretching is a more
efficient operation than tiling, when creating a destination
diagonal line, stretching is used for the longer component,
and tiling is used for the shorter component. Thus, if the
destination diagonal line to be created has a longer vertical
component than horizontal component, the destination diago-
nal line is created by stretching the prerendered line texture
vertically and tiling the stretched prerendered line texture
horizontally. If, on the other hand, the destination diagonal
line to be created has a longer horizontal component than
vertical component, the destination diagonal line is created by
stretching the prerendered texture horizontally and tiling the
stretched prerendered line texture in the vertical direction.

FIG. 7a illustrates creating a destination diagonal line 702
from a prerendered line texture 704 according to an embodi-
ment. Exemplary prerendered line texture 704 has dimen-
sions of 8x8 pixels. In the example, of FIG. 7a, destination
diagonal line 702 has a width of 16 pixels and a length of 32
pixels. In an embodiment, the pixel dimensions of desired line
702 are obtained from the coordinates in the destination
screen (frame buffer) to which the line is to be drawn. For
example, if prerendered line texture 704 is to be drawn to the
points (10,20), (26,52) in the destination screen, the destina-
tion diagonal line dimensions would be 16x32 pixels.

Because, in the example illustrated in FIG. 7a, the vertical
component of destination diagonal line 702 is greater than the
horizontal component, in an embodiment, prerendered line
texture 704 is stretched vertically and tiled horizontally to
generate destination diagonal line 702. The number of tiles
and amount of stretching for the illustration of FIG. 7a is
described below with respect to FIG. 8.

FIG. 74 illustrates creating a destination diagonal line 710
according to another embodiment. In the embodiment of FIG.
7b, destination diagonal line 710 is created by stretching in
both directions rather than using tiling as described above
with respect to FIG. 7a. As can be seen in FIG. 75, while
stretching in both directions can be used to create a destina-
tion diagonal line in an embodiment, it may result in a
blockier looking line rendering. The amount of stretching for
the illustration of FIG. 75 is described below with respect to
FIG. 8.

In an embodiment, a destination diagonal line that is longer
than the line of the prerendered line texture is generated using
multiple blits of the prerendered line texture to destination
rectangles in the frame buffer. For each blit, the coordinates of
the destination rectangle in the frame buffer is changed to
generate a smooth destination diagonal line. As described in
more detail below, the size of the destination rectangles is
determined as a function of the size of the prerendered line
texture in pixels in the direction of the shorter component of
the destination diagonal line and the number of blits required.
When the destination diagonal line is shorter than the line of
the prerendered line texture, in an embodiment, the preren-
dered line texture is only stretched to generate the destination
diagonal line.

FIG. 8 is a flow chart 800 for generating a destination
diagonal line from a prerendered line texture according to an
embodiment. In step 802, a determination is made as to which
component of the destination diagonal line is longer. As

US 9,338,498 B2

11

described above, stretching is performed in the direction of
the longer component of the destination diagonal line, and
tiling is performed in the direction of the shorter component
of the destination diagonal line. In step 804, the number of
blits required is calculated. In an embodiment, the number of
blits is equivalent to the number of tiles. For example, refer-
ring to FIG. 7a, blitting line texture 704 horizontally twice
effectively tiles line texture 702 in the horizontal direction
twice, giving the required 16 pixels. The number of blits
required is determined by dividing the number of pixels for
the smaller component of destination diagonal line by the
width of the prerendered line texture. In the example of FIG.
7a, this equates to 2 blits (16 bits in the shorter horizontal
direction of destination diagonal line 702 divided by 8 bits in
the width of prerendered line texture 704). In step 806, the
number of pixels required to be added in each destination blit
is determined. The number of pixels to be added provides the
required stretching. Step 806 is described in more detail with
respect to FIG. 9 and its accompanying text.

In step 808, a destination rectangle is determined. The
destination rectangle is determined as having the additional
pixels required to effectuate the stretching operation
described above. In an embodiment, the blitter, such as blitter
206 performs the stretching described above as part of its
functionality. As a result, the stretching need not be pro-
grammed independently. Thus, the destination rectangle in
the example of FIG. 7a would have dimensions of 8x16
pixels. In step 810, the source rectangle, in this case the line
texture, is blitted to the destination rectangle.

In step 812, coordinates for the next destination rectangle
for the next blit (tile) are determined to make the destination
line continuous. In step 814, the source rectangle, the line
texture, is blitted to the destination rectangle defined by the
new coordinates. In step 816, steps 812 and 814 are repeated
for the number of blits (tiles).

FIG. 9 is a flow chart 900 for determining the number of
pixels to be added to generate the required stretch in step 806
according to an embodiment. In step 902 the number of pixels
in the direction of the longer component of the destination
line is determined. In an embodiment, this can be determined
as the absolute value of the delta of the coordinates of the
longer component of the destination diagonal line. In step
904, the calculated number of pixels is divided by the number
of required blits. In step 906, the number of pixels in the
prerendered line in the direction of the longer component of
the destination diagonal line is subtracted from the result of
the division in step 904. This difference is the total number of
pixels that needs to be added in each destination blit. That is,
this difference is used as the dimension of the destination
rectangle in the direction of the longer component of the
destination diagonal line for each blit.

For example, in the illustration in FIG. 7a, the number of
required blits is 2. The number of pixels in the longer com-
ponent (vertical) of destination diagonal line 702 is 32. Divid-
ing this number of pixels by the number of required blits
yields 16 pixels. The number of pixels in the component of
prerendered line 704 in the same direction (vertical) is 8.
Because prerendered line texture 704 is square, its width or
height in pixels could be used as a default for the present
calculations. Subtracting 8 from the division result (16) yields
8 pixels. Thus, 8 pixels must be added in each stretch to
generate the desired destination diagonal line.

Pseudocode for creating a destination diagonal line having
a longer vertical component and in the same direction as the
prerendered line texture as described in flow chart 800
according to an embodiment is provided in listing 4.

5

10

15

20

25

30

35

40

45

50

55

12

Listing 4. Pseudo code for rendering stretched vertical line in
direction of prerendered line texture according to an embodiment.

© 2011, The DIRECTV Group, Inc.

void blit_ stretched_ vertical_lines(int X1, int y1, int X2, int y2)

// (x1,y1) is the start point on the screen for the destination diagonal line
// (x2,y2) is the end point on the screen for the destination diagonal line

intx_delta=x2-x1+1,y_delta=y2 -yl +1;

int absolute_ x_ delta = abs(x2 — x1), absolute__y__delta = abs(y2 - y1);
int blit__count = absolute_ x__delta / texture__width + 1;

intprev_x =0, prev_y =0, next_x=0, next_y =0;

for (int i = 0; i <blit_count; i++)

next_x = (i + 1) * x__delta / blit_ count;
next_y=next_x *y_delta/x delta;
source.x = line_ offset;
source.y = line_ offset;
source.width = next_ x — prev_x;
source.height = next_ x — prev_x + line_ offset;
dest.x = prev_x +x1;
dest.y =prev_y +yl;
dest.width = next_ x — prev_x;
dest.height = next_y - prev_y;
// In an embodiment, value are modified depending on if it is the first,
// last, or a middle blit
if (i==10)// First blit
{

source.x —= line_ offset;

source.width += line__offset;

dest.x —= line__offset;

dest.width += line__offset;

dest.height = (next__x + line_ offset) * (y__delta/x_delta) —

prev_y;

} else if (i == blit__count - 1) //last blit

source.y —= line_ offset;
source.width += line__offset;
dest.height = next_y — (prev__x — line_ offset) * y_ delta /
x__delta;
dest.width += line__offset;
dest.y =y1 + (prev__x — line_ offset) * y_ delta / x_ delta;
} else // middle blit
{
source.y —= line_ offset;
source.height += line_ offset;
dest.y = (prev__x — line_offset) * y_ delta/ x__delta + y1;
dest.height = ((next_x + line_ offset) * y_ delta/x_ delta) —
((prev_x — line_ offset) * y__delta / x__delta);

blit(line__texture, source, dest);
prev__X =next_X; prev_y = next_y;

}

© 2011, The DIRECTV Group, Inc.

Pseudocode for creating a destination diagonal line having
a longer horizontal component and in the same direction as
the prerendered line texture as described in flow chart 800
according to an embodiment is provided in listing 5.

Listing 5. Pseudo code for rendering stretched horizontal line in
direction of prerendered line texture according to an embodiment.

© 2011, The DIRECTV Group, Inc.

void blit_stretched__horizontal lines(int X1, int y1, int X2, int y2)

// (x1,y1) is the start point on the screen for the destination diagonal line
// (x2,y2) is the end point on the screen for the destination diagonal line

60{

65

intx_delta=x2-x1+1,ydelta=y2 -yl +1;

int absolute__x__delta = abs(x2 — x1), absolute_y_ delta =
abs(y2 - y1);

int blit__count = absolute__y_ delta / texture__width + 1;
intprev_x=0,prev_y=0,next_x=0, next_y=0;

for (int i = 0; i <blit__count; i++)

next_x =(i+ 1) *y_delta/blit_count;

US 9,338,498 B2

13

-continued

14

-continued

Listing 5. Pseudo code for rendering stretched horizontal line in
direction of prerendered line texture according to an embodiment.

next_y =next_x * x_delta/y_delta;
source.x = line__offset;

source.y = line_ offset;

source.width = next_y — prev__y + line_ offset;
source.height = next_y — prev_y;

dest.x = prev_x + x1;

dest.y = prev_y +y1;

dest.width = next_ x — prev_x;

dest.height = next_y - prev_y;

// In an embodiment, values are modified depending on if it is the
// first, last, or a middle blit

if (i == 0) //first blit

source.y —= line_ offset;

source.height += line_ offset;

dest.y —= line_ offset;

dest.width += line__offset;

dest.height = (next_y + line_ offset) * (x__delta/
y__delta) — prev_x;

} else if (i == blit__count - 1) //last blit
{
source.x —= line__offset;
source.height += line_ offset;
dest.width = next_ x — (prev__y - line_ offset) *
x_delta/y_ delta;
dest.height += line_ offset;
dest.x = x1 + (prev_y - line_ offset) * x__delta /
y__delta;
} else // middle blit
{

source.x —= line__offset;

source.width += line__offset;

dest.x = (prev_y — line_offset) * x__delta /

y__delta + x1;

dest.height = ((next_y + line_ offset) * x_ delta/
y__delta) — ((prev_y - line_ offset) * x__delta / y_ delta);

blit(line_texture, source, dest);
prev__X =next_X; prev_y = next_y;

}

© 2011, The DIRECTV Group, Inc.

In an embodiment, lines can be drawn in any direction, not
just the direction of the prerendered line texture. In one
embodiment, this is handled by having two prerendered line
textures, one in one direction, and one in the other direction.
A determination is made as to the direction of the destination
diagonal line, and the appropriate prerendered line texture is
used depending on the direction of the destination line. This
approach can be somewhat wasteful of scarce memory
resources. As aresult, a second approach using mirroring can
be employed.

To avoid having to store two prerendered line textures,
mirroring is used. In mirroring, the stored prerendered line
texture is logically flipped about the vertical axis at its center
so that the effective line is being drawn in the other direction.

Psuedo code for creating a destination diagonal line having
a longer horizontal component and in the opposite direction
from the prerendered line texture as described in flow chart
800 according to an embodiment is provided in listing 6.

Listing 6. Pseudo code for rendering stretched vertical line in
direction opposite that of prerendered line texture according
to an embodiment.

© 2011, The DIRECTV Group, Inc.

void blit_reversed_ stretched_ vertical_lines(int x1, int y1, int X2, int y2)
// (x1,y1) is the start point on the screen for the destination diagonal line
// (x2,y2) is the end point on the screen for the destination diagonal line

10

15

20

25

30

35

40

45

55

60

65

Listing 6. Pseudo code for rendering stretched vertical line in
direction opposite that of prerendered line texture according
to an embodiment.

intx_delta=x2-x1-1,y_delta=y2 -yl +1;

int absolute_x_ delta = abs(x2 — x1), absolute_y_ delta =
abs(y2 - y1);

int blit__count = absolute__x__delta / texture__width + 1;
intprev_x=0,prev_y=0,next_x =0, next_y =0;

for (int i = 0; i <blit_count; i++)

next_x = (i + 1) * x__delta/blit_count;

next_y =next_x *y_delta/x delta;

source.x = line_ offset + (prev__x — next_x);
source.y = line_ offset;

source.width = next_ x — prev_x;

source.height = prev__x — next_x + line_ offset;;
dest.x =next_x +x1 + 1;

dest.y =prev_y +yl;

dest.width = prev_x — next_x;

dest.height = next_y - prev_y;

// In an embodiment, values are modified depending on if it is
// the first, last, or a middle blit

if (i == 0) //first blit

source.width —= line__offset;
dest.width += line__offset;
dest.height = (next__x — line_ offset) * (y__delta/x_delta) —
prev_y;
} else if (i == blit__count - 1) // last blit
{
source.x += line_ offset;
source.y —= line_ offset;
source.width —= line__offset;
dest.height = next_y — (prev__x + line_ offset) * y_ delta /
x__delta;
dest.width += line_ offset;
dest.y =y1 + (prev_x + line_ offset) * y_ delta / x_ delta;
dest.x —= line__offset;
} else // middle blit
{
source.y —= line_ offset;
source.height += line_ offset;
dest.y = (prev__x + line__offset) * y_ delta/ x__delta + y1;
dest.height = ((next_x — line_ offset) * y_ delta/x_ delta) -
((prev_x + line_ offset) * y__delta / x__delta);

blit(line__texture, source, dest);
prev__X =next_X; prev_y = next_y;

}

© 2011, The DIRECTV Group, Inc.

Psuedo code for creating a destination diagonal line having
a longer horizontal component and in the opposite direction
from the prerendered line texture as described in flow chart
800 according to an embodiment is provided in listing 7.

Listing 7. Pseudo code for rendering stretched horizontal line
in direction opposite that of prerendered line texture according
to an embodiment.

© 2011, The DIRECTV Group, Inc.
void blit_reversed_ stretched__horizontal lines(int x1, int y1, int X2,
inty2)

intx_delta=x2-x1+1,y_delta=y2 -yl - 1;

int absolute_x__delta = abs(x2 — x1), absolute_y_ delta =
abs(y2 - y1);

int blit_ count = absolute__y_ delta / texture__width + 1;
intprev_x=0,prev_y =0,next_x =0, next_y=0;

for (inti = 0; i <blit_count; i++)

next_x =(i+ 1) * y_delta/blit_count;
next_y =next_x * x_delta/y_delta;

US 9,338,498 B2

15

-continued

16

-continued

Listing 7. Pseudo code for rendering stretched horizontal line
in direction opposite that of prerendered line texture according
to an embodiment.

source.x = line_ offset + prev_y — next_y;
source.y = line_ offset;

source.width = next_y — prev_y - line_ offset;
source.height = prev_y — next_y;

dest.x = prev_x + x1;

dest.y=prev_y+yl +1;

dest.width = next_ x — prev_x;

dest.height = prev__y — next_y;

// In an embodiment, values are modified depending on if it
// is the first, last, or a middle blit

if (i == 0) //first blit

source.height += line_ offset;
dest.width += line__offset;
dest.height = (next_y — line_ offset) * (x__delta/y_ delta) -
prev_x;
} else if (i == blit_count - 1) //last blit
{
source.x += line_ offset;
source.y —= line_ offset;
source.height += line_ offset;
dest.width = next_ x — (prev__y + line_ offset) * x_ delta/
y__delta;
dest.height += line_ offset;
dest.x =x1 + (prev_y + line_offset) * x__delta/y_ delta;
dest.y —= line_ offset;
} else //middle blit
{
source.x += line__offset;
source.width —= line_ offset;
dest.x = (prev__y + line_ offset) * x__delta/y_ delta + x1;
dest.width = (next__y — line_ offset) * x__delta /y_ delta) —
((prev_y + line_ offset) * x__delta/y_ delta);

blit(line__texture, source, dest);
prev__X = next__x; prev__y = next_y,;

}

© 2011, The DIRECTV Group, Inc.

Pseudocode for creating a destination diagonal line having
a longer vertical component for a single blit rendering as
described in flow chart 800 according to an embodiment is
provided in listing 8.

Listing 8. Pseudo code for rendering single blit vertically stretched
line according to an embodiment.

© 2011, The DIRECTV Group, Inc.
void blit_single vertical line(int x1, int y1, int X2, int y2, bool reversed)
{
intx_delta=x2-x1+1,y_delta=y2 -yl +1;
int absolute_ x_ delta = abs(x2 — x1), absolute__y_ delta =
abs(y2 - y1);
int width = absolute__x__delta + line__width;
//if reversed is true the line is in the opposite direction from the
//prerendered line texture
if (reversed)

source.x = width;

source.y = line_ offset;

source.width = —width;

source.height = —source.y;

dest.x = x1;

dest.y = y1 — absolute__y_ delta - line_ offset;

}

else
{
source.X = line_ offset
source.y = 0;
source.width = absolute_y_ delta + 1;
source.height = absolute__y_ delta + line_ widtj;

10

20

25

30

35

40

45

55

60

65

Listing 8. Pseudo code for rendering single blit vertically stretched
line according to an embodiment.

dest.x =x1;
dest.y =yl - line_ offset;

dest.width =x_ delta + 1;
dest.height = absolute_y_ delta + line_ width;
blit(line__texture, source, dest);

© 2011, The DIRECTV Group, Inc.

Pseudocode for creating a destination diagonal line having
a longer horizontal component for a single blit rendering as
described in flow chart 800 according to an embodiment is
provided in listing 9.

Listing 9. Pseudo code for rendering single blit vertically stretched
line according to an embodiment.

© 2011, The DIRECTV Group, Inc.
void blit_single_horitzonal_line(int X1, int y1, int X2, int y2, bool
reversed)
{
intx_delta=x2-x1+1,y_delta=y2 -yl +1;
int absolute_ x__delta = abs(x2 - x1), absolute__y_ delta =
abs(y2 - y1);
int width = absolute__x__delta + line__width;
//if reversed is true the line is in the opposite direction from the
//prerendered line texture
if (reversed)

source.x = line_ offset;
source.y = absolute_y_ delta + line_ width;
source.width = absolute_y_ delta + 1;
source.height = —source.y;
dest.x = x1;
dest.y = y1 — absolute__y_ delta - line_ offset;
¥
else
{
source.X = line__offset
source.y = 0;
source.width = absolute_y_ delta + 1;
source.height = absolute__y_ delta + line_ width;
dest.x = x1;
dest.y = y1 - line_ offset;

dest.width =x_ delta + 1;
dest.height = absolute__y_ delta + line_ width;

blit(line__texture, source, dest);

© 2011, The DIRECTV Group, Inc.

FIG. 10 is a flow chart 1000 for a method of invoking the
above-described functions according to an embodiment. In
step 1002, it is determined whether the line to be rendered is
a pure horizontal line. If the line to be rendered is a pure
horizontal line, processing continues in step 1004 with ren-
dering of a pure horizontal line from the prerendered line
texture. If the line to be rendered is not a pure horizontal line,
processing continues in step 1006, where it is determined it is
determined whether the line to be rendered is a pure vertical
line. If the line to be rendered is a pure vertical line, process-
ing continues in step 1008 with rendering of a pure vertical
line from the prerendered line texture. If the line to be ren-
dered is not a pure vertical line, processing continues in step
1012, where it is determined whether the line to be rendered
is longer vertically or horizontally. Ifthe line to be rendered is
longer vertically, processing continues in step 1012 with ren-
dering of a diagonal line having a longer vertical component
from the prerendered line texture. As described above, to

US 9,338,498 B2

17

render a diagonal line having a longer vertical component, the
prerendered line texture is tiled horizontally and stretched
vertically. If, on the other hand, the line to be rendered is
longer horizontally, processing continues in step 1014 with
rendering of a diagonal line having a longer horizontal com-
ponent from the prerendered line texture. As described above,
to render a diagonal line having a longer horizontal compo-
nent, the prerendered line texture is tiled vertically and hori-
zontally.

Pseudo code for a wrapper for invoking the above-de-
scribed functions according to an embodiment is provided in
listing 10.

Listing 10. Pseudo code for a wrapper for invoking the
above-described functions.

© 2011, The DIRECTV Group, Inc.
void draw__line(int x1, int y1, int X2, int y2)

if (y1 == y2) //horizontal line
{

blit__horizontal line(x1, y1, x2, y2);
return;

If (x1 == x2) //vertical line

blit_vertical_line(x1, y1, x2, y2);
return;

int xdelta = x2 - x1;

int ydelta =y2 - y1;

int slope = (y1 - y2) / (x1 — x2);

int blit__count = abs(xdelta) / texture_ width + 1;
If (blit__count = 0)

return;
¥
if (abs(xdelta) < abs(ydelta))

// vertically longer
if (ydelta <0)

swap(x1, x2); // In an embodiment, swap to draw
swap(yl, y2); // in the same direction for the given slope

If (blit__count = 1)

If (ydelta < 0)

void blit_single_ vertical_line(x1,y1,x2,y2,TRUE);
else

void blit_single_ vertical_line(x1,y1,x2,y2,FALSE);
return;

¥
if (slope >= 0)
blit_ stretched_ vertical lines(x1, y1, X2, y2);
else
blit_reverse_ stretched_ vertical_lines(x1, y1, X2, y2);
¥

else

// horizontally longer
if (xdelta <0)

swap(x1, x2); // In an embodiment, swap to draw
swap(yl, y2); // in the same direction for the given slope

If (blit__count = 1)

If (xdelta < 0)
void blit_ single_ horizontal_ line(x1,y1,x2,y2,TRUE);
else
void blit_single_ horizontal_ line(x1,y1,x2,y2,FALSE);
return;

if (slope >= 0)
blit_stretched__horizontal lines(x1, y2, x2, y2);
else
blit_reversed_ stretched__horizontal lines(x1, y2, x2, y2);

10

15

20

25

30

35

40

45

50

55

60

65

18

-continued

Listing 10. Pseudo code for a wrapper for invoking the
above-described functions.

}

© 2011, The DIRECTV Group, Inc.

In an embodiment, adjustments are made to handle bound-
ary conditions depending upon whether a first blit, a last blit,
or a middle blit is being processing for rendering a particular
destination diagonal line. As a result first blits, last blits and
middle blits may be handled somewhat differently. Such pro-
cessing is described in listings 4-7.

In an embodiment, if the line the destination diagonal line
is shorter than the prerendered line texture, no tiling is per-
formed. In such a case, the line is stretched only to make the
desired angle.

In an embodiment, additional memory savings is obtained
by using only the alpha channel color for the pixels in the
prerendered line texture. In an embodiment, the color pro-
vided for the alpha channel is a default color set for the alpha
channel. Consequently, only one byte per pixel is required for
color in the prerendered line texture. This also provides true
anti-aliasing over live video as color blending is performed by
native STB graphic and composition hardware rather than the
CPU.

The foregoing disclosure of the preferred embodiments of
the present invention has been presented for purposes of
illustration and description. It is not intended to be exhaustive
or to limit the invention to the precise forms disclosed. Many
variations and modifications of the embodiments described
herein will be apparent to one of ordinary skill in the art in
light of the above disclosure. The scope of the invention is to
be defined only by the claims appended hereto, and by their
equivalents.

Further, in describing representative embodiments of the
present invention, the specification may have presented the
method and/or process of the present invention as a particular
sequence of steps. However, to the extent that the method or
process does not rely on the particular order of steps set forth
herein, the method or process should not be limited to the
particular sequence of steps described. As one of ordinary
skill in the art would appreciate, other sequences of steps may
be possible. Therefore, the particular order of the steps set
forth in the specification should not be construed as limita-
tions on the claims. In addition, the claims directed to the
method and/or process of the present invention should not be
limited to the performance of their steps in the order written,
and one skilled in the art can readily appreciate that the
sequences may be varied and still remain within the spirit and
scope of the present invention.

What is claimed is:

1. A system to render a destination diagonal line having a
vertical component and a horizontal component on a screen
display, comprising:

a frame buffer to store data to be displayed on the screen

display;

aprocessor to generate a destination rectangle in the frame

buffer and a prerendered line texture, wherein the prer-
endered line texture corresponds to at least a portion of
the destination diagonal line, and includes a line that has
a line width, and that comprises line pixels and anti-
aliasing pixels, wherein the processor determines pixel
intensity of the anti-aliasing pixels in accordance with
the line width such that if the line width is smaller than

US 9,338,498 B2

19

a predetermined line width, pixel intensity of each anti-
aliasing pixel is determined as a function of the line
width, and wherein if the width is larger than the prede-
termined line width, pixel intensity of each anti-aliasing
pixel is determined a function of anti-aliasing pixel dis-
tance from the line;

a memory that has a source rectangle in which to store the

prerendered line texture; and

a blitter to blit the prerendered line texture from the source

rectangle in the memory to the destination rectangle in
the frame buffer, wherein the blitter stretches the prer-
endered line texture in a direction corresponding to the
longer of the vertical and horizontal components and
tiles the entire stretched prerendered line texture in a
direction corresponding to the shorter of the vertical and
horizontal components.

2. The system recited in claim 1, wherein the coordinates of
the destination rectangle for a particular blit are determined to
maintain continuity of the destination diagonal line.

3. The system of claim 1, wherein if the determined inten-
sity for an anti-aliasing pixel is greater than or equal to 1, the
intensity of the anti-aliasing pixel is set to a maximum inten-
sity and wherein if the intensity determined for the anti-
aliasing pixel is less than zero, the intensity of the anti-
aliasing pixel is set to zero.

4. The system of claim 1, wherein the processor is a fixed
point processor and calculations are performed using fixed
point numbers with a predetermined bit shift value to accom-
modate floating point calculations using the fixed point pro-
Cessor.

5. The system of claim 1, wherein the prerendered line
texture is rendered in an alpha channel, and the blitter auto-
matically alpha blends the rendered line with an image
appearing on the screen behind the rendered line.

6. The system of claim 1, wherein coordinates for the
destination rectangle are determined to maintain continuity of
the diagonal destination line.

7. The system of claim 1, wherein the blitter mirrors the
prerendered line texture prior to blitting.

8. The system of claim 1, wherein a size of the destination
rectangle size is determined in accordance with the required
stretching of the prerendered line texture.

9. The system of claim 1, wherein the processor determines
anumber of blits required to generate the destination diagonal
line in a direction corresponding to the shorter of the vertical
and horizontal components.

10. A method to render a destination diagonal line having a
vertical component and a horizontal component on a screen
display, comprising:

storing in a frame buffer data to be displayed on the screen

display;

generating a destination rectangle in the frame buffer;

generating a prerendered line texture, wherein the preren-

dered line texture corresponds to at least a portion of the

15

20

25

30

40

45

20

destination diagonal line, and includes a line that has a
line width, and that comprises line pixels and anti-alias-
ing pixels, wherein the processor determines pixel inten-
sity of the anti-aliasing pixels in accordance with the line
width such that if the line width is smaller than a prede-
termined line width, pixel intensity of each anti-aliasing
pixel is determined as a function of the line width, and
wherein if the width is larger than the predetermined line
width, pixel intensity of each anti-aliasing pixel is deter-
mined a function of anti-aliasing pixel distance from the
line;
storing the prerendered line texture in a source rectangle in
a memory; and

blitting the prerendered line texture from the source rect-
angle in the memory to the destination rectangle in the
frame buffer, wherein the blitter stretches the preren-
dered line texture in a direction corresponding to the
longer of the vertical and horizontal components and
tiles the entire stretched prerendered line texture in a
direction corresponding to the shorter of the vertical and
horizontal components.

11. The method of claim 10, further comprising determin-
ing the coordinates of the destination rectangle for the blitting
to maintain continuity of the destination diagonal line.

12. The method of claim 10, further comprising setting the
intensity of an anti-aliasing pixel to a maximum intensity if
the determined intensity for the anti-aliasing pixel is greater
than or equal to 1, and setting the intensity of the anti-aliasing
pixel to zero if the determined intensity for the anti-aliasing
pixel is less than zero.

13. The method of claim 10, further comprising using a
fixed point processor and performing calculations using fixed
point numbers with a predetermined bit shift value to accom-
modate floating point calculations using the fixed point pro-
Ccessor.

14. The method of claim 10, further comprising rendering
the prerendered line texture in an alpha channel, and the alpha
blending the rendered line with an image appearing on the
screen behind the rendered line.

15. The method of claim 10, further comprising determin-
ing coordinates for the destination rectangle to maintain con-
tinuity of the diagonal destination line.

16. The method of claim 10, further comprising mirroring
the prerendered line texture prior to blitting.

17. The method of claim 10, further comprising determin-
ing a size of the destination rectangle size in accordance with
the required stretching of the prerendered line texture.

18. The method of claim 10, further comprising determin-
ing a number of blits required to generate the destination
diagonal line in a direction corresponding to the shorter of the
vertical and horizontal components.

#* #* #* #* #*

